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Abstract
Matching between numbers of classical and supersymmetric turning points is
the key point for the transition from the Wentzel–Kramers–Brillouin (WKB)
to the supersymmetric WKB (SWKB) quantization condition. But mismatch
between these numbers for quasi-degenerate problems challenges the traditional
transition from WKB to SWKB methods. Here we resolve this problem for
the n-fold quasi-degenerate case by suggesting a transition from the WKB
quantization condition for the supersymmetric partner potential to the SWKB
quantization condition. Our explicit example of threefold quasi-degeneracy
nicely demonstrates the procedure proposed here.

PACS numbers: 03.65.Sq, 03.65.−w, 11.30.Pb

1. Introduction

A large variety of potentials are encountered in various branches of physics where exact analytic
solutions of the Schrödinger equation are not possible; then one has to resort to approximation
methods such as perturbation, variation or WKB methods. Among these, the WKB [1]
method is the most useful since it can be applied to any smoothly varying potential. However,
except for the harmonic oscillator, the WKB method fails to produce exact results even for
potentials for which exact analytic solutions exist. Comtet et al [2] applied the concept of
supersymmetric quantum mechanics (SSQM) [3] to the WKB method and proposed a modified
semiclassical quantization condition known as the supersymmetric WKB (SWKB) condition
which yields the exact eigenspectrum for all known shape-invariant potentials (SIPs) [4]. The
accuracy of the lowest-order SWKB (LSWKB) quantization condition for non-SIPs is also
remarkable [5, 6]. The LSWKB method has also been applied successfully to tunnelling
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problems [7]. The transition from the lowest-order WKB (LWKB) method to the LSWKB
method is quite straightforward for single-well and single-barrier problems, where one can
associate two SWKB turning points with two WKB turning points. But this transition following
the simple association breaks down when there is quasi-degeneracy. Exact degeneracy does not
appear in one dimension; however, quasi-degenerate states appear when two or more identical
wells interact by tunnelling through intervening potential barriers. For quasi-degenerate states,
the number of SWKB turning points exceeds the number of WKB turning points due to the
superpotential having a number of oscillations. So a straightforward transition from the LWKB
to the LSWKB condition is not possible. Mismatch between WKB and SWKB turning points
challenges the straightforward transition and makes the problem more interesting. Recently
we have studied the case of a double finite square well [8] and that of a double harmonic
oscillator well [6]. Both of them exhibit twofold quasi-degeneracy; while the number of WKB
turning points is four, the number of SWKB turning points is six. In [8], we proposed a
reformulated SWKB quantization condition which successfully resolves the problem. But the
situation becomes more complicated when multiple identical wells interact through intervening
barriers exhibiting multifold quasi-degeneracy. A generalized procedure for transition from
the WKB to the SWKB quantization condition—each having a different number of turning
points—for an n-fold quasi-degenerate case has not been found so far. In [10], Milczarski
and Giller have studied the exactness of conventional and supersymmetric JWKB formulae.
But the most general questions of why the traditional WKB to SWKB transition procedure
fails for multifold quasi-degeneracy and how to correlate SWKB turning points with WKB
ones have not been answered clearly. In this paper we present a general survey using the
wavefunction ansatz technique. We observe that the number of SWKB turning points always
matches the number of classical turning points of the supersymmetric partner potential, V2(x).
This leads to a general prescription for obtaining the SWKB quantization condition from the
WKB quantization condition for V2(x) for quasi-degenerate cases. We also present an explicit
example of a threefold quasi-degenerate problem to nicely demonstrate our prescription.

The paper is organized as follows. In section 2, we briefly review the LSWKB quantization
condition for the single well and the single barrier. In section 3, we present the example of
threefold quasi-degeneracy. In section 4 we generalize to the case of n-fold quasi-degeneracy.
Lastly, in section 5, we draw our conclusions and also focus on some of the implications.

2. Transition from the LWKB to the LSWKB condition

In the lowest order, the WKB quantization for a particle of mass m moving in the one-
dimensional potential V (x) is [1]

∫ b

a

√
2m(EWKBn − V (x)) dx = (n + 1

2 )πh̄ (n = 0, 1, 2, . . .), (1)

where a and b are the classical turning points defined by EWKBn = V (a) = V (b).
In SSQM, one replaces the potential V (x) by the Riccati equation [3]

V1(x) = W 2(x)− h̄√
2m
W ′(x) (2)

whereW(x) is called the superpotential and is defined in terms of the ground-state wavefunction
ψ0(x): as

W(x) = − h̄√
2m

ψ ′
0

ψ0
. (3)
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In equation (2), V1(x) is the original potential V (x), but on a shifted energy scale such that its
ground-state energy is zero. That is,

V1(x) = V (x)− E0 (4)

where E0 is the ground-state energy of V (x). In terms of the superpotential (substituting the
Riccati equation in (1)), the lowest-order SWKB quantization condition becomes [2]∫ x2

x1

√
2m(E(1)n −W 2(x)) dx = nπh̄ (n = 0, 1, 2, . . .) (5)

whereE(1)n is the energy in the shifted energy scale and x1 and x2 are the SWKB turning points
corresponding to the WKB turning points a and b, and are defined through

E(1)n = W 2(x1) = W 2(x2). (6)

Of the two solutions, W(x1) = −W(x2) = √
E(1)n corresponds to unbroken super-

symmetry [2, 3]. For broken supersymmetry the SWKB turning points are defined through
W(x1) = W(x2) = √

E(1)n and the lowest-order SWKB quantization condition becomes [3]
∫ b

a

√
2m

h̄2 (V (x)− EWKBn ) dx ⇒
∫ x2

x1

√
2m

h̄2 (W
2(x)− ESWKBn ) dx. (7)

In SSQM, one can construct a partner potential V2 in terms of W :

V2 = W 2 +
h̄√
2m
W ′. (8)

The SSQM algebra shows that the two partners, V1 and V2, will have the same eigenspectrum
except that the ground state of V1 is missing in the spectrum of V2 (E(1)n+1 = E(2)n , n =
0, 1, 2, . . .). The leading-order SWKB quantization condition for V2 becomes [3]∫ x2

x1

√
2m(E(2)n −W 2(x)) dx = (n + 1)πh̄ (n = 0, 1, 2, . . .). (9)

Comparing equation (9) with (5), one notices that they are consistent with the level degeneracy
(E(1)n+1 = E(2)n , n = 0, 1, 2, . . .). The lowest-order SWKB quantization condition has been
successfully applied to various bound-state problems, such as the harmonic oscillator, Coulomb
and Morse problems [3, 4], and also to one-dimensional barriers [9]. One can easily see
that, in each of these cases, the superpotential has a monotonic nature, exhibiting either
broken or unbroken supersymmetry, and the number of supersymmetric turning points always
matches the number of classical turning points. But this nature changes drastically when
V (x) has two or more interacting wells. The superpotential becomes oscillating, losing its
monotonic nature, and exhibits mixing of broken and unbroken supersymmetry. In [6, 8],
we have studied two important examples exhibiting twofold quasi-degeneracy. One is the
double harmonic oscillator [6] and the other one is the double finite square well [8]. In both
cases, the superpotential exhibits one complete oscillation, having six SWKB turning points
in contrast with the four WKB turning points of V1. This immediately indicates the failure
of the traditional transition scheme. In [8] we present an elegant alternative way to bypass
the problem. Application of this reformulated SWKB quantization to the double finite square
well nicely reproduces the twofold quasi-degenerate states [8]. In the following sections we
study the threefold quasi-degenerate problem by using the wavefunction ansatz technique
and generalize the connection between classical and supersymmetric turning points for n-fold
quasi-degeneracy.
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Figure 1. A plot of W 2 for three wells (x0 = 6) showing ten SWKB turning points.

3. Threefold quasi-degeneracy

Here we use the wavefunction ansatz technique (i.e., start with a chosen ground-state
wavefunction) to analytically build up the triple wells. We start with ψ0 as the sum of three
Gaussians representing three wells centred at x = 0, x0 and −x0:

ψ0(x) = e−(x−x0)
2

+ e−x2
+ e−(x+x0)

2
. (10)

We calculate W 2, V1 and V2 by using equations (3), (2) and (8), respectively and plot them in
figures 1–3, respectively. It is easy to see that ten turning points of the superpotential do not
match with six WKB turning points of the original potential V1. So one cannot correlate them,
because classically accessible regions become supersymmetrically inaccessible and vice versa.
To solve this riddle we need the help of SSQM. The partner potential V2 is isospectral with
V1. Figure 3 shows that the numbers of classical turning points for V2(x) and supersymmetric
turning points of W(x) match. So instead of V1, we can use its partner V2 and can make the
transition from the WKB to SWKB condition in a straightforward way. All the energy levels
of V1 are obtained from the sypersymmetric level degeneracy:

E
(1)
n+1 = E(2)n (n = 0, 1, 2, . . .). (11)

We first formulate the WKB quantization condition for ten turning points by the standard
WKB procedure [1] and use the WKB to SWKB transitions to accessible and inaccessible
regions separately. The accessible regions ai < x < ai+1 (with i = 1, 3, 5, 7, 9) correspond
to unbroken supersymmetry where −W(xi) = W(xi+1) =

√
ESWKB and we have∫ ai+1

ai

√
2m

h̄2 (E
(2)
n − V2(x)) dx =

∫ xi+1

xi

√
2m

h̄2 (E
(2)
n −W 2(x)) dx − π

2
(i = 1, 3, 5, 7, 9).

(12)

The inaccessible regions ai < x < ai+1 (with i = 2, 4, 6, 8) correspond to broken
supersymmetry where W(xi) = W(xi+1) = ±

√
ESWKB and we have [3]∫ ai+1

ai

√
2m

h̄2 (V2(x)− E
(2)
n ) dx =

∫ xi+1

xi

√
2m

h̄2 (W
2(x)− E

(2)
n ) dx (i = 2, 4, 6, 8). (13)

Using the above transition procedure we get the SWKB quantization condition for the ten
turning points (x1, x2, x3, x4, x5, x6, x7, x8, x9, x10) as
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Figure 2. A plot of V1 for three wells (x0 = 6) showing six WKB turning points.

−32 sin(I1) exp(J2) sin(I3) exp(J4) sin(I5) exp(J6) sin(I7) exp(J8) sin(I9)

+ 8 sin(I1) exp(J2) sin(I3) exp(J4) sin(I5) exp(J6) cos(I7) exp(−J8) cos(I9)

+ 8 sin(I1) exp(J2) sin(I3) exp(J4) cos(I5) exp(−J6) cos(I7) exp(J8) sin(I9)

+ 2 sin(I1) exp(J2) sin(I3) exp(J4) cos(I5) exp(−J6) sin(I7) exp(−J8) cos(I9)

+ 8 sin(I1) exp(J2) cos(I3) exp(−J4) cos(I5) exp(J6) sin(I7) exp(J8) sin(I9)

− 2 sin(I1) exp(J2) cos(I3) exp(−J4) cos(I5) exp(J6) cos(I7) exp(−J8) cos(I9)

+ 2 sin(I1) exp(J2) cos(I3) exp(−J4) sin(I5) exp(−J6) cos(I7) exp(J8) sin(I9)

+ 1
2 sin(I1) exp(J2) cos(I3) exp(−J4) sin(I5) exp(−J6) sin(I7) exp(−J8) cos(I9)

+ 8 cos(I1) exp(−J2) cos(I3) exp(J4) sin(I5) exp(J6) sin(I7) exp(J8) sin(I9)

− 2 cos(I1) exp(−J2) cos(I3) exp(J4) sin(I5) exp(J6) cos(I7) exp(−J8) cos(I9)

− 2 cos(I1) exp(−J2) cos(I3) exp(J4) cos(I5) exp(−J6) cos(I7) exp(J8) sin(I9)

− 1
2 cos(I1) exp(−J2) cos(I3) exp(J4) cos(I5) exp(−J6) sin(I7) exp(−J8) cos(I9)

+ 1
2 cos(I1) exp(−J2) sin(I3) exp(−J4) sin(I5) exp(−J6) cos(I7) exp(J8) sin(I9)

+ 1
8 cos(I1) exp(−J2) sin(I3) exp(−J4) sin(I5) exp(−J6) sin(I7) exp(−J8) cos(I9)

+ 2 cos(I1) exp(−J2) sin(I3) exp(−J4) cos(I5) exp(J6) sin(I7) exp(J8) sin(I9)

− 1
2 cos(I1) exp(−J2) sin(I3) exp(−J4) cos(I5) exp(J6) cos(I7) exp(−J8) cos(I9) = 0 (14)

where

Ii =
∫ xi+1

xi

√
2m

h̄2 (E
SWKB −W 2) (i = 1, 3, 5, 7, 9)

Ji =
∫ xi+1

xi

√
2m

h̄2 (W
2 − ESWKB) (i = 2, 4, 6, 8).

(15)
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Figure 3. A plot of V2 for three wells (x0 = 6) showing ten WKB turning points.

We solve the SWKB quantization condition (equation (14)) usingW given by equation (3)
together with equation (10). The numerical results for a few low-lying triplet states are
presented in table 1 for x0 = 6 fm and h̄2/2m = 20.735 MeV fm2. The parameters are
so chosen as to make the degeneracy effect pronounced. For comparison, we present exact
numerical results as well as the WKB results in the same table. The WKB results are obtained
from the WKB quantization condition with six WKB turning points (TPs) given by

1

2

(
sin

∫ a2

a1

k(x) dx

)(
exp −

∫ a3

a2

K(x) dx

)(
cos

∫ a4

a3

k(x) dx

)

×
(

exp −
∫ a5

a4

K(x) dx

)(
sin

∫ a6

a5

k(x) dx

)

+ 2

(
sin

∫ a2

a1

k(x) dx

)(
exp −

∫ a3

a2

K(x) dx

)(
sin

∫ a4

a3

k(x) dx

)

×
(

exp
∫ a5

a4

K(x) dx

)(
cos

∫ a6

a5

k(x) dx

)

+ 2

(
cos

∫ a2

a1

k(x) dx

)(
exp

∫ a3

a2

K(x) dx

)(
sin

∫ a4

a3

k(x) dx

)

×
(

exp −
∫ a5

a4

K(x) dx

)(
sin

∫ a6

a5

k(x) dx

)

− 8

(
cos

∫ a2

a1

k(x) dx

)(
exp

∫ a3

a2

K(x) dx

)(
cos

∫ a4

a3

k(x) dx

)

×
(

exp
∫ a5

a4

K(x) dx

)(
cos

∫ a6

a5

k(x) dx

)
= 0 (16)
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Table 1. Comparison of exact, WKB and SWKB energies (MeV) for the triple wells.

n Exact energy WKB energy SWKB energy

1 82.939 948 82.938 083 82.938 868
2 82.940 058 82.938 098 82.938 970
3 82.940 231 82.939 342 82.940 131

4 165.878 803 165.875 497 165.877 652
5 165.880 676 165.876 835 165.880 204
6 165.883 236 165.880 228 165.887 138

7 248.805 144 248.796 097 248.810 339
8 248.824 559 248.815 690 248.837 458
9 248.848 569 248.838 303 248.888 389

where

k(x) =
√

2m

h̄2 (E − V1(x)) (E > V1(x))

K(x) =
√

2m

h̄2 (V1(x)− E) (E < V1(x)).

(17)

All the energy values in table 1 are given on the shifted scale. The results of the WKB calcu-
lations starting from V2(x) agree closely with those obtained from V1(x) (as expected) and are
not presented in table 1. It is very interesting to observe that SWKB energies (obtained from the
quantization condition with ten TPs) agree excellently (especially for low-lying states where the
effect of degeneracy is most prominent) with the exact ones obtained by solving the Schrödinger
equation numerically. It is seen that the SWKB approximation is better than the WKB approxi-
mation in most cases, especially for low-lying triplet states, which are most difficult to calculate.
In a few cases (the states numbered 6, 8 and 9), the WKB appears to be slightly better than the
SWKB. This appears to be due to a relatively large numerical error in the exact calculation.

4. Multifold quasi-degeneracy

Using the wavefunction ansatz technique (choose the ground-state wavefunction as the sum
of Gaussian terms), one can easily build up multiple wells analytically. From this, further
calculations of the superpotential and the partner potentials are quite straightforward. One can
easily verify how the number of WKB turning points (in V1 and V2) and the number of SWKB
turning points (in W 2) increase as the degree of quasi-degeneracy increases. The connection
between the numbers of classical and supersymmetric turning points is presented in table 2,
from which it is easy to generalize the cases of n-fold quasi-degeneracy problems. One can
easily see that, in each case, the number of classical turning points for V2 and (not for V1)
matches with the number of SWKB turning points. Although V1 and V2 are two partners and
according to SSQM must have same eigenspectrum, to proceed further with SSQM one has to
start with V2 and not with V1. The generalization shows that for n-fold quasi-degeneracy, the
number of turning points in V1 is 2n and the number of turning points inW 2 is (4n− 2) (since
one extra well introduces one additional complete oscillation in W(x)), which matches the
number of turning points in V2. Thus one has to use the WKB quantization condition for V2(x)

(and not V1(x)) to derive the SWKB quantization condition using W(x), whenever quasi-
degeneracy appears. Note also that, for an n-fold quasi-degeneracy, each one of V1(x), V2(x)

and W 2(x) has an (n− 2)-fold periodic symmetry and a twofold symmetry at the two edges.
These symmetries can be utilized in simplifying the SWKB quantization condition, resulting
in a much simpler numerical calculation.
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Table 2. The connection between classical and supersymmetric turning points.

No of classical No of classical No of supersymmetric
turning points turning points turning points

Degeneracy in V1 in V2 in W 2 Comment

2-fold 4 6 6 Same No of
3-fold 6 10 10 turning
4-fold 8 14 14 points in
5-fold 10 18 18 V2 and W 2

— — — —
n-fold 2n 4n− 2 4n− 2

5. Summary and conclusions

The transition from the WKB to the SWKB quantization condition is straightforward for single
wells or single barriers for which there are two turning points for both the WKB and SWKB
procedures. This case corresponds to no quasi-degeneracy. Quasi-degeneracy in one dimen-
sion appears when two or more identical wells interact through intervening finite barriers. For
n such identical wells, there will be n-fold quasi-degeneracy and 2n classical turning points. In
such a case, the superpotential has (n−1) complete oscillations and there are (4n−2) SWKB
turning points. The difference in the numbers of WKB and SWKB turning points for n > 1
makes a straightforward transition from the WKB to the SWKB quantization condition impos-
sible. The difficulty is removed if, instead of the original potential, one uses its supersymmetric
partner (V2), which has the same number (=4n − 2) of classical turning points as there are
SWKB turning points. Use of twofold symmetry at the two edges and (n− 2)-fold symmetry
of the internal wells further simplifies the LSWKB quantization conditions. Earlier works es-
tablished that the reformulated SWKB procedure accurately reproduces the quasi-degenerate
states of double wells [8]. In the present paper we extend our work to n-fold quasi-degeneracy
and explicitly calculate the threefold quasi-degenerate states of a triple well. It unambiguously
establishes our argument that for n-fold quasi-degeneracy (with n > 1) one always has to
use the partner potential V2 instead of original potential V1 in the SWKB transition. SWKB
calculation usingV2 together with its periodic symmetries may be more interesting for physical
systems exhibiting periodic identical potential wells, resulting in band structure.
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